SECTION-C

Time and Frequency Domain

 Analysis of Systems
Introduction

- So far we have looked at the behaviour of systems in response to:
- fixed DC signals
- constant AC signals
- We now turn our attention to the operation of circuits before they reach steady-state conditions
- this is referred to as the transient response
- We will begin by looking at simple $R C$ and $R L$ circuits

Charging Capacitors and Energising Inductors

Capacitor Charging

- Consider the circuit shown h ϵ
- Applying Kirchhoff's voltage la

$$
i R+v=V
$$

- Now, in a capacitor

$$
i=c \frac{\mathrm{~d} v}{\mathrm{~d} t}
$$

- which substituting gives

- The above is a first-order differential equation with constant coefficients
- Assuming $V_{C}=0$ at $t=0$, this can be solved to give

$$
v=V\left(1-\mathrm{e}^{-\frac{t}{c R}}\right)=V\left(1-\mathrm{e}^{-\frac{t}{T}}\right)
$$

- see Section 18.2.1 of the course text for this analysis
- Since $i=C \mathrm{~d} v / \mathrm{d} t$ this gives (assuming $V_{C}=0$ at $t=0$)

$$
i=l e^{-\frac{t}{C R}}=l e^{-\frac{t}{T}}
$$

- where $I=V / R$
- Thus both the voltage and current have an exponential form

(a)

(b)

(c)

Inductor energising

- A similar analysis of this circuit gives

$$
v=V \mathrm{e}^{-\frac{R t}{L}}=V \mathrm{e}^{-\frac{t}{T}}
$$

$$
i=I\left(1-\mathrm{e}^{-\frac{R t}{L}}\right) /\left(1-\mathrm{e}^{-\frac{t}{\mathrm{~T}}}\right)
$$

where $I=V / R$

- see Section 18.2.2 for this analysis

- Thus, again, both the voltage and current have an exponential form

(a)

(b)

(c)

Discharging Capacitors and De-energising Inductors

Capacitor discharging

- Consider this circuit for discharging a capacitor
- At $t=0, V_{c}=V$
- From Kirchhaff's soltage law V
- giving $C R \frac{d v}{d t}+v=0$

- Solving this as before gives

$$
\begin{aligned}
& V=V e^{-\frac{t}{C R}}=V e^{-\frac{t}{T}} \\
& i=-l e^{-\frac{t}{C R}}=-l e^{-\frac{t}{T}}
\end{aligned}
$$

- where $I=V / R$
- see Section 18.3.1 for this analysis
- In this case, both the voltage and the current take the form of decaying exponentials

(a)

(b)

(c)

Inductor de-energising

- A similar analysis of this circuit gives

$$
\begin{gathered}
V=-V e^{-\frac{R t}{L}}=-V e^{-\frac{t}{T}} \\
i=l e^{-\frac{R t}{L}}=l e^{-\frac{t}{T}}
\end{gathered}
$$

- where $I=V / R$
- see Section 18.3.1
 for this analysis
- And once again, both the voltage and the current take the form of decaying exponentials

(b)

(c)

A comparison of the four circuits

(b)

(c)

(a)

(b)
(c)

(b)

(c)

