SECTION-C

Time and Frequency Domain Analysis of Systems

Introduction

- So far we have looked at the behaviour of systems in response to:
 - fixed DC signals
 - constant AC signals
- We now turn our attention to the operation of circuits before they reach steady-state conditions
 - this is referred to as the transient response
- We will begin by looking at simple RC and RL circuits

Charging Capacitors and Energising Inductors

Capacitor Charging

- Consider the circuit shown he
 - Applying Kirchhoff's voltage lav iR+v=V

- Now, in a capacitor $i = C \frac{dv}{dt}$

- which substituting gives
$$CR \frac{dt}{dt} + V = V$$

- The above is a first-order differential equation with constant coefficients
- Assuming $V_c = 0$ at t = 0, this can be solved to give

$$v = V(1 - e^{\frac{t}{CR}}) = V(1 - e^{\frac{t}{T}})$$

– see Section 18.2.1 of the course text for this analysis

• Since i = Cdv/dt this gives (assuming $V_c = 0$ at t = 0) $i = le^{-\frac{t}{CR}} = le^{-\frac{t}{T}}$

- where I = V/R

 Thus both the voltage and current have an exponential form

Inductor energising

• A similar analysis of this circuit gives

$$v = Ve^{\frac{Rt}{L}} = Ve^{\frac{t}{T}}$$

$$i = l(1 - e^{-\frac{Rt}{L}})l(1 - e^{-\frac{t}{T}})$$

$$t = 0$$

$$V = Ve^{\frac{Rt}{L}} = Ve^{\frac{t}{T}}$$

$$V = Ve^{\frac{Rt}{L}} = Ve^{\frac{t}{T}}$$

- see Section 18.2.2 for this analysis

where I = V/R

 Thus, again, both the voltage and current have an exponential form

Discharging Capacitors and De-energising Inductors

Capacitor discharging

• Consider this circuit for discharging a capacitor

$$- \text{At } t = 0, V_c = V$$

– From Kirchikoff's voltage law V

- giving
$$CR\frac{dv}{dt} + v = 0$$

• Solving this as before gives

$$v = Ve^{-\frac{t}{CR}} = Ve^{-\frac{t}{T}}$$

$$i = -le^{-\frac{t}{CR}} = -le^{-\frac{t}{T}}$$

- where I = V/R
- see **Section 18.3.1** for this analysis

 In this case, both the voltage and the current take the form of decaying exponentials

Inductor de-energising

• A similar analysis of this circuit gives

$$v = -Ve^{-\frac{Rt}{L}} = -Ve^{-\frac{t}{T}}$$

$$i = Ie^{-\frac{Rt}{L}} = Ie^{-\frac{t}{T}}$$

- where I = V/R
- see Section 18.3.1
 for this analysis

 And once again, both the voltage and the current take the form of decaying exponentials

A comparison of the four circuits

